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The bicycle is a low-cost means of transport linked to low risk of COVID-19
transmission. Governments have incentivized cycling by redistributing street
space as part of their post-lockdown strategies. Here, we evaluate the impact
of provisional bicycle infrastructure on cycling traffic in European cities. We
scrape daily bicycle counts spanning over a decade from 736 bicycle counters
in 106 European cities. We combine this with data on announced and com-
pleted pop-up bike lane road work projects. On average 11.5 kilometers of
provisional pop-up bike lanes have been built per city. Each kilometer has in-
creased cycling in a city by 0.6%. We calculate that the new infrastructure will
generate $3 billion in health benefits per year, if cycling habits are sticky.

As social and economic activity resume after a period of social distancing to curb COVID-
19, policy-makers are seeking mitigation measures with favorable cost-benefit ratios that can
be implemented in the short-run. While overall mobility is almost back to pre-crisis levels in
many European countries, the use of public transport is still lagging behind (1). Early evidence
points to shifts from public transport to car use as users react to the pandemic (2). Governments
have started incentivizing cycling as a low-cost, sustainable, equitable, and space-saving mode
of transport that reduces the risk of COVID-19 transmission. A key measure has been the
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redistribution of street space in cities to create provisional bike infrastructure often provisionally
marked and protected by materials readily available from road construction companies. Up to
July 8 2020, 2000 kilometers of these infrastructure changes had been announced (3).

In Europe, typically more than 50% of overall trips measured in transport surveys are shorter
than 5 kilometers (4). In 2019, 3 million electric bicycles were sold in the EU (5) likely making
cycling more demographically diverse and increasing the distances traveled (6). This speaks to
an important short-term potential for shifts in transport mode choice that could reduce crowds
in public transport and help avoid traffic congestion in response to increased car use out of fears
of infection.

Mode choices are subject to behavioral effects, such as status quo bias, default effects, and
time-inconsistent preferences (7). This complicates the task of policy-makers to encourage
people to cycle, particularly in the short-run. However, major disruptions to public transport,
such as strikes, cause people to reconsider their habits (8). Furthermore, highly visible, large-
scale expansions in the provision of bicycle amenities, such as bike sharing (9) or a city-wide
network of 120 kilometers of separated bike lanes built within four years in Sevilla (10), have
increased cycling and reduced congestion (9).

Here, we provide causal estimates of the effect of the post-COVID-19-lockdown roll-out
of provisional (“pop-up”) bike lanes in European cities. We compile new data on daily bike
counts in 110 cities. We connect to the open data application programming interfaces (APIs)
of these cities to download bike counts from a total of 736 counters spanning over a decade.
We combine this data with information on day-to-day changes in the number of kilometers of
pop-up bike lanes, which is collected by the European Cyclists’ Federation based on official
documents and media reports. (3) Our sample consists of large and medium-sized cities in 20
European countries.

We estimate a Poisson regression model at the counter level with daily counts of cyclists as
the outcome variable and the number of kilometers of pop-up bike lanes in service in a city on
a given day as the treatment.

Since the roll-out of pop-up bike lanes is not a controlled experiment, our main empirical
concern is that both the implementation of bike lanes and bicycle counts are driven by a third
factor that cannot be measured (omitted variable bias). We may also worry that bike lanes are
built as a reaction to increased cycling traffic (reverse causality). We address these concerns
using quasi-experimental variation in the roll-out of pop-up bike lanes in different European
cities.

Planning for provisional cycling infrastructure in Europe has started early in the pandemic
as a reaction to civil society pressure after announcements by the City of Bogota on 16 and 17
March to create 76 km of provisional bike lanes that was widely reported in the international
media. Similar plans were assembled in several European cities and the roll-out of these plans
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has started during lock downs as a means to allow necessary travel under high safety standards
particularly for “key workers” (see Fig. 1).

Fig. 1. Intensity of pop-up bike lane treatment over time This Figure shows treated cities and their treatment intensities in implemented
kilometers of public bike lanes at a given day between March and July 2020. Control cities are not plotted but are included in Fig. S1 (see
Supplementary Materials). London, Milan, Rome, and Lisbon are missing from the sample due to a lack of daily bicycle counter data. Bars
that do not cover the whole study period to July 8 2020 indicate missing bicycle count data for the most recent dates due to updating time lags
of the counter APIs. Information on individual pop-up bike lanes with their street location, announcement date, and implementation date is
from the European Cyclists’ Federation. The newest data can be found at: https://ecf.com/dashboard

Officials have stated in interviews and personal conversations, that the geographic placement
of pop-up bike lanes has mainly been driven by the availability of street space that can be redis-
tributed without restricting car traffic to only one direction and the existence of “shovel-ready”
construction plans. The exact timing of pop-up bike lane construction is driven by administra-
tive idiosyncrasies and the availability and schedules of construction firms. Therefore, we argue
that the timing of the roll-out of pop-up bike lanes has been as good as random.

We compare bike traffic in treated cities in the days before and after they get treated com-
pared to control cities and find that one kilometer of popup bike lane increases cycling by 0.6%
(see right one of coefficients marked in blue in Fig. 2). When we multiply this estimate for a
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kilometer of bike lane with the average number of kilometers (11.5), we find that the average
effect of bike lane programs is a 7% increase in city-wide cycling.

Our regression analysis is based on comparisons between treatment and control groups be-
fore and after treatment around each cohort of new bike lanes (differences-in-differences). We
use a set of indicator variables (fixed effects) that remove variation from our estimation sample
that could be biasing our estimates. Our study design allows for systematic differences in the
level of bike traffic between treatment and control group, but relies on a common trends assump-
tion, that bike traffic in treated and control cities would have evolved on a parallel trend in the
absence of treatment. Since we cannot observe treated units in their untreated state after treat-
ment (potential outcome), we cannot test the common trends assumption formally. However,
we can investigate pre-treatment trends and check the sensitivity of our estimates to changes in
the control group definition.

The bike count data spans over a decade. We can compare changes in cycling in the weeks
after the introduction of pop-up bike lanes with the same calendar weeks in previous years. Fig.
2 shows a regression estimate based on this comparison (see left one of coefficients highlighted
in blue). Comparisons between weeks in 2020 and weeks in previous years may be biased by
differential trends between treatment and control group. Fig. 3 shows the estimated difference
between treatment and control group in the 12 months before and 3 months after the begin of
the pop-up bike lane roll-out in March. The baseline category in this event study specification
is −13. This means that all estimated coefficients for months before and after treatment are
relative to February 2019.

We can see that a treatment effect becomes only apparent after the treatment sets in. Before,
treatment and control group have been on the same trend. There is a slight but statistically
insignificant downward trend before treatment (Ashenfelter’s dip (11)), hinting at the possibility
of stronger mobility reductions due to COVID-19 in cities that have decided to build pop-up bike
lanes. This could be the case because local and national governments are more likely to take
wide-ranging action, if their country is hit by a more intense outbreak. It could also be due to
governments acting upon idiosyncratic risk-aversion of their populations towards cycling in the
context of emptier roads and increased speeding during the lockdown. We rule out that these
potential selection into treatment effects are driving our results by controlling for COVID-19
related dynamics with fixed effects and a variable that captures human mobility at the sub-
national level based on Facebook user movements.

The treatment effect magnitude in Fig. 3 is higher than our baseline estimate. This differ-
ence stems from hard-coding the treatment in March 2020 and therefore discarding variation
in treatment timing at the day and week levels. This creates a more standard difference-in-
difference setting, that avoids the issue of already treated cities acting as controls for later co-
horts, while they are still on a different trend because of prior treatment (12). Therefore our
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Fig. 2. Effect of pop-up bike lanes on cycling in different model specifications This figure shows estimates of regressions of the daily
cyclist count on the number of kilometers of pop-up bike lane implemented at a given day in a city. The unit of observation is the bike counter.
Baseline specifications are marked in blue. Darker colors in the bottom panel indicate the type of specification used. The 95% confidence
interval is shown in darker color and the 90% confidence interval in lighter color. One estimate is from an OLS specification and uses the
natural logarithm of the bicycle count as the outcome. All other specifications are Poisson regressions. The estimates can be interpreted as the
average increase in the level of cycling caused by one kilometer of pop-up bike lane. Control variables are from Facebook (mobility index
measured by user movements) and the ERA5 climate model (weather variables). The variable Number of counters indicates the total of
counters per city.

main estimates tend to be attenuated compared to the setup shown in Fig. 3.
We check the sensitivity of our results to reshaping our regression-based treatment and con-

trol group comparisons. Fig. 2 shows fairly stable estimates for comparisons between (i) treated
and untreated cities, (ii) cities that are already treated and those that have only announced pop-
up bike lanes, (iii) between treated cities only using their variation in treatment dose (km of
bike lane built) and treatment timing or (iv) treatment timing only (event study).

As a baseline our difference-in-differences model includes fixed effects at the unit (counter)
and time (day) level. We thereby control for time-invariant factors at the level of each counter
and city, such as public transport and population density, topography, and preferences for green
lifestyles. With our counter fixed effect we also rule out that our effect is driven by new counters
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Fig. 3. Treatment effect in months before and after beginning of pop-up bike lane treatment This figure shows the treatment effect of
treated cities compared to untreated cities. Observations are binned into months before and after treatment. The treatment is hard-coded to
March 2020. The baseline category and the begin of the sample is February 2019. Estimates are from Poisson regressions that include city and
country-day fixed effects. The shaded area shows the 95% confidence interval.

that get placed next to provisional bike lanes. The day fixed effect removes trends from the
treatment and outcome variation that are common to the whole sample. These could be overall
trends in cycling, seasonality, and the overall evolution of the COVID-19 pandemic in Europe.
Fixed effects at the country-day level remove variation in cycling infrastructure and behavior
that is driven by state- or national-level COVID-19 policies. Estimates based on days before and
after treatment within the same week have higher magnitudes when country-day fixed effects
are excluded from the model. This suggests that within a narrow time window around treatment,
national policy events and cycling behavior are correlated. Estimates that either include country-
day fixed effects or use longer pre- and post-treatment windows (no city-week fixed effect or
city-calendar week fixed effect only) mitigate this bias.

For potentially biasing factors that vary at the city-level over time, such as local mobility
or weather, we cannot include fixed effects since this is the geographical level at which our
treatment is measured. We therefore include control variables in our regressions that measure
overall changes in mobility at the state-level. This variable is based on the aggregated move-
ments of Facebook users. This is to rule out that our effect is driven by local authorities reacting
to increased traffic volumes. We also control for local temperatures, sunshine, wind and pre-
cipitation. Weather could for instance create bias, when construction firms decide to create new
bike lanes in weeks with good weather that will also have more cycling.

In sum, we find robust evidence for substantial short-run increases in cycling in European
cities due to new provisional cycling infrastructure. An average pop-up bike lane program has
led to a 7% increase in city-wide cycling. The effects of this cycling infrastructure on COVID-
19 transmission should be investigated with high-resolution case data for a large enough number
of cities.

Independent of its impacts on COVID-19 transmission, the net benefits of the intervention
are likely to be large. The direct cost of cycling infrastructure including planning is low. For
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the Sevilla network one kilometer of bike lane cost AC250000 (10). Iterative planning with
provisional infrastructure reduces costs further. In Berlin, one kilometer of pop-up bike lane has
so far cost AC9500 (13). Previous research has found that every kilometer of cycling generates
health benefits of $0.62 (14). We calculate baseline values for total cycling in a city based on
data on daily kilometers cycled in German cities in 2018 and extrapolate these numbers to the
rest of our sample based on city-level data on modal splits and population (see Supplementary
Materials). We calculate that the additional cycling caused by the pop-up bike lane treatment
during its first three months of operation has generated $800 million in health benefits. The new
infrastructure will generate $3 billion per year in health benefits, if the new bike lanes become
permanent and if cycling habits are sticky.

The magnitude of our estimate is large compared to previous evaluations of cycling infras-
tructure improvements that have found statistically unclear or modest effects, typically because
of the limited scale of the interventions (15, 16, 17). Further research could investigate the
non-linearities in cycling adoption in terms of scale and timing of an infrastructure roll-out.
It remains to be evaluated, if cycling behavior is sticky and how similar treatments influence
behaviors outside of the pandemic environment.

Research based on surveys indicates that separated, protected infrastructure is a key element
to incentivize up-take of cycling (18, 19). Cities have experimented with a range of measures
to create new spaces for cycling, ranging from painted to provisionally protected bike lanes and
from traffic calming with signs to built “modal filters” that only let bicycles and pedestrians pass.
In our data, we do not see which share of increased bike counts is from new cyclists and which is
from existing cyclists, who decide to cycle more often or farther. Large representative individual
level samples, for instance based on transport mode detection by smartphone sensors, may help
to investigate changes in modal split at a sufficiently high geographical resolution. GPS traces
of individual trips could also help understand, how new infrastructure changes the route choices
of cyclists (20) and to measure the willingness to take detours for better infrastructure in terms
of value of time.
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Supplementary Information

Bicycle count data We assemble a new data set of daily bicycle counts from municipal bicy-
cle counters. We connect to national and municipal open data portals for bike counter data sets
and connect directly to the API of those cities that use the Eco-Counter standard (see . We also
obtain longer time series of bike counts going back to 2012 directly from the Mayor’s staff for
road planning and data in Paris.

Our raw data set contains roughly a million daily counts starting in 2007. We drop the lower
and upper percentiles from this raw sample since counters can record very low values, when they
are not functioning properly or very high values, when there is a cycling event that drives up
counts. We drop the counter 100041252 from Bergen that varies between very low values and
some of the highest daily counts in the sample. Our results are robust to keeping these extreme
values in the sample. The bulk of the bike counts are from most recent years (see Table S1) and
we focus most of the comparisons made in our regressions on the years 2019 and 2020. Figures
S3 and S4. show the variation in weekly average bike counts for cities in our study sample.
Fig. S3. shows treated cities and Fig. S4. control cities. For certain cities, such as Paris and
Berlin the raw data already indicates that increase in peak in June 2020 compared to June 2019.
Many of the control cities show a similar pattern. Our regression analyses find a robust effect
of new infrastructures, both when taking the difference in these differences between treatment
and control cities, but also when focusing on variation in treatment timing exclusively.

Table S1 shows summary statistics for the main variables included in our analysis. The unit
of observation in our analyses is the bike counter and counts vary daily. An average counter
detects 1457 cyclists per day. The average number of counters per city is 22.9. The average
size of cities in our sample is 33000 ha. European cities tend to be denser than American cities.
Thus, our study areas can be thought of small commuting zones rather than city cores.

Pop-up infrastructure data We use project-level data on provisional infrastructure in Eu-
ropean cities as a reaction to the COVID-19 pandemic collected by the European Cyclists’
Federation (3). In the data we see the street, where the project is implemented, its size mea-
sured in kilometers, the date of announcement, and the date of implementation. The data also
contains the type of project. 80% are categorized as bike lanes and 16% as traffic calming. Our
data includes all projects recorded until 8 July 2020. We aggregate this data at the city-day level
to construct a variable of daily implemented kilometers of pop-up bike lane. We use the city
definition and corresponding polygons from the European Urban Audit 2020 (21). Typically
areas defined by the European Urban Audit include suburbs. For instance, the Paris polygon
includes many areas beyond the ring highway that surrounds the municipality of Paris (”Ville
de Paris”). This allows us to capture commuting enabled by new bike lanes from the suburbs
into the city center, which make up an important share of projects (see Fig. S1). However, this
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also means that for infrastructure projects, which are concentrated in one part of a city, such as
in Berlin’s district of Friedrichshain-Kreuzberg, we tend to underestimate the effect.

Our estimation sample contains 22 treated cities and 84 control cities, both of which some
are dropped from our Poisson regressions depending on the specification because of a lack of
variation after removing fixed effects or because we do not have observations for our control
variables. Fig. S2. shows the 20 treatment cities, for which the size of pop-up infrastructure
projects has been recorded in kilometers. We can see that Dublin and Berlin have been the
earliest adopters of pop-up bike lanes in the sample and Paris has been the city with the largest
program. We use this variation in both timing and the extent of the implemented infrastructure
to estimate our effects. We also include control cities in the chart to illustrate the distribution
of control cities across European countries. We have a large sample from both France and
Germany. This allows us to estimate our effect based on within-country variation removing
time-varying factors related to the pandemic that could create bias in our estimates. Note that,
while important cities such as London, Milan, Lisbon and Rome had either announced or al-
ready implemented a pop-up bike lane program at the time of the analysis, they are missing
from the sample due to insufficient spatial or temporal coverage of the bike count data. The
average length by city of all bike infrastructures in our sample combined is 11.5 kilometers, the
length of bike lanes is 8.2 and the number of measures implemented 19.8.

We check the sensitivity of our results to different specifications of the treatment, for in-
stance as an indicator variable that is 1, if there is any cycling related infrastructure change in a
city and 0 otherwise. The average effect of having any pop-up infrastructure treatment in a city
is 6% (column 4 in Table S3). The effect per individual measure taken by cities is 0.4% (column
3). Our findings are robust, when we define treatment based exclusively on those projects that
are clearly marked as bike lanes in the data (column 2) rather than based on all types of cycling
and traffic calming measures combined (column 1).

Mobility and weather controls Our identification strategy relies on the use of different con-
trol groups that we expect to be on a common trend around individual daily cohorts of pop-up
infrastructure projects. As a baseline we remove and therefore control for time-invariant dif-
ferences between cities and the locations of the individual counters in our data. Therefore any
additional time-invariant control variables would be redundant in our analysis. We also use
fixed effect interacting different spatial levels with time dimensions, thereby controlling for
many time-varying factors. We use additional data that varies at a high spatial and temporal
resolution to rule out any bias that may be introduced by time-varying factors below our fixed
effect levels.

We use weather data from the ERA5 climate model, that provides hourly reanalysis mea-
sures of surface temperature, UV radiation, precipitation and wind at a 0.25◦ × 0.25◦ resolu-
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tion (22). We use the ecwmfr package (23) to aggregate this to the EU Urban Audit city poly-
gons at the daily level. We capture average human mobility throughout the phase of the COVID-
19 pandemic starting in March with a human mobility index based on Facebook data (24). The
index is from a data set called ”movement range maps” that Facebook shares after aggregating
individual user movements for humanitarian and research purposes with a reference to the prin-
ciples outlined by epidemiologists and public health researchers (25). It measures the number
of daily 600 meter grid cells visited by Facebook users compared to a baseline in February.
For most of our sample the index is aggregated to the state-level, where we use the data. Ta-
ble S1 shows that on average in our sample period daily mobility has been below the February
baseline.

Regression model We model the relationship between cycling traffic and the pop-up bike lane
treatment as:

logBike Counticd = β1Bike Lane (km)cd +Xid + λi + σcw + ϕnd + εid (1)

where i indexes a counter, c indexes a city, n indexes a country, d indexes a day, and w
indexes as week.

λi is a counter fixed effect that controls for time invariant factors at a high spatial resolution.
σcw is a city-week fixed effect that controls for week-specific time-varying factors effectively
restricting identifying variation to days before and after treatment within the same week in the
same city. ϕnd is a country-day fixed effect that captures any daily changes common to all cities
in a country.

The coefficient of interest is β1. It captures the effect of the pop-up bike lane treatment on
average bicycle counts in a city. Our baseline treatment variable is defined as the number of
kilometers of pop-up bike lanes implemented on a given day. Multiplied by a 100 the estimate
can be interpreted as the change in bicycle count for a unit change in the treatment variable.

Xid is a vector of control variables including the mobility index based on Facebook data,
weather variables (temperature, UV radiation, wind, precipitation) and the number of counters
per city.

We use Poisson pseudo-maximum likelihood regressions (PPML) to estimate this model
(26). As a robustness check we also use ordinary least squares (OLS) with the natural logarithm
of the bicycle count as the outcome (see Fig. 1). We cluster standard errors at the city-level,
where treatment is assigned (27).

Calculating the health benefits of the policy We calculate the health benefits by combining
our estimates of cycling increases for each kilometer of pop-up bike lane with an estimate of
the average health benefits of a kilometer cycled ($0.62) from the literature, which is lower than

12



typical values from the gray literature (14). Our regression estimates only provide us with a
percentage increase in cycling (0.6%) per kilometer of bike lane. We convert this result into
additional kilometers cycled in a city based on baseline values of kilometers cycled per person
in a city from a detailed transport behavior survey in 135 German cities (28). We impute values
of kilometers cycled for other European cities based on information on the modal split (trips)
of commutes (29) and a city’s population both taken from the European Urban Audit (30).

Our estimate only counts benefits from cycling but not the saved costs of a potential modal
shift from car use to cycling, that we cannot measure with our data. It also does not take into
account shifts from walking or jogging and cycling for exercise to cycling in the city, where
counters in our sample are typically placed. Since the external costs of car use are high (31),
we interpret our calculation as a lower bound.
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Mean Std. Dev. 25% 50% 75% 95% Min. Max.

Daily number of cyclists 1457.2 1895.7 255 744 1923 5151 1 13339
City size (ha) 32893.8 42393.6 14163.3 22018.5 40659.9 89180.2 455.6 251517
Year 2017 2 2016 2018 2019 2020 2007 2020
Number of counters in the same city 22.9 23.2 4 14 32 82 1 90
Facebook mobility index -0.16 0.21 -0.27 -0.11 -0.0044 0.088 -0.81 0.51

Observations 995818

Table S1. Summary statistics at the counter-day level The unit of observation of our analysis is the counter and data varies daily. Count
data is from municipal bike counters and is obtained from different APIs. Treatment and control variables are assigned to counters based on
their city attribute. City definitions are from the EU Urban Audit. The Facebook mobility index is only available from March 2020. It
measures aggregate movement activity by Facebook users in a given administrative area (districts or states).
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Mean Std. Dev. 25% 50% 75% 95% Max.

Total length of bike infrastructures 11.5 20.0 1.39 2.57 16.6 57.9 85.1
Total lenght of bike lanes 8.24 18.3 0.24 2.05 7.35 24.8 84.3
Number of measures 19.8 48.1 1 4 17 52 226

Observations 22

Table S2. Summary statistics of most recent state of infrastructure at the city level show We use data from the European Cyclists’
Federation. The raw data includes information on individual infrastructure projects announced or implemented. We aggregate it to the
city-day level using city definitions from the EU Urban Audit. Our analysis includes data up to the 8 July 2020. The newest data can be found
at: https://datastudio.google.com/u/0/reporting/ba90a08c-9841-4beb-9e26-7d4f7d002709/page/yMRTB
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Outcome: Cyclist count

(1) (2) (3) (4)
All km Bike lane km Num of measures Any treatment

Pop-up treatment 0.006∗∗ 0.007∗∗ 0.004∗ 0.061∗

(0.003) (0.003) (0.002) (0.036)

City clusters 78 78 78 78
N 59904 59904 59904 59904

Table S3. Different treatment specifications Each column shows the effect of treatment with pop-up infrastructure on a city’s cycling count
compiled from city APIs. The data on daily pop-up bike lane additions are from the European Cyclists’ Federation (3). The unit of
observation is the cycling counter. Time variation is daily. Coefficients are from Poisson regressions. Column (1) shows the effect of a
kilometer of any bike infrastructure, (2) shows the effect of bike lanes, (3) the effect of any single measure in a city, and (4) the overall
treatment of an implemented pop-up infrastructure program in a city. All regressions include counter and day fixed effects and controls for
overall mobility (measured with Facebook user movements), weather (temperature, wind, sunshine, precipitation), and the number of counters
in a city. We cluster standard errors at the city level, where treatment is assigned. Significance levels are ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Fig. S1. Pop-up bike lanes and bicycle counters in Paris The map shows pop-up bike lanes implemented in Paris up to 3 July 2020 (green
lines) and the location of bike counters (dots) in our data set. The detailed infrastructure data has been collected by a consortium of French
NGOs and researchers. It is available at: https://carto.parlons-velo.fr/#10.13/48.8312/2.5506
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Fig. S2. Intensity of pop-up bike lane treatment over time in treatment cities and control cities This Figure shows treated cities and their
treatment intensities in implemented kilometers (coloring on a log scale) of public bike lanes at a given day between March and July 2020.
Control cities are plotted in white. London, Milan, Lisbon and Rome are missing from the sample due to insufficient spatial or temporal
coverage of the data. Information on individual pop-up bike lanes with their street location, announcement implementation is from the
European Cyclists’ Federation. The newest data can be found at: https://ecf.com/dashboard
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Fig. S3. Average bike count per week in treated cities Daily bike counts are aggregated by city and averaged over the week. Bike counts are
assembled from municipal open data feeds. The lower and upper percentiles from the initial sample (treated and control cities combined) are
removed from the sample. Only measurements from 2019 and 2020 are shown. City definitions are chosen according to EU Urban Audit.
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Fig. S4. Average bike count per week in control cities Daily bike counts are aggregated by city and averaged over the week. Bike counts are
assembled from municipal open data feeds. The lower and upper percentiles from the initial sample (treated and control cities combined) are
removed from the sample. Only measurements from 2019 and 2020 are shown. City definitions are chosen according to EU Urban Audit.
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